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Albert Renold strived to gain insight into the abnor-
malities of human diabetes by defining the patho-
physiology of the disease peculiar to a given animal.
He investigated the Israeli desert-derived spiny mice
(Acomys cahirinus), which became obese on fat-rich
seed diet. After a few months hyperplasia and hyper-
trophy of B-cells occurred leading to a sudden rup-
ture, insulin loss and ketosis. Spiny mice were low
insulin responders, which is probably a characteris-
tic of certain desert animals, protecting against in-
sulin oversecretion when placed on an abundant
diet. We have compared the response to overstimula-
tion of several mutant diabetic species and nutrition-
ally induced nonmutant animals when placed on
affluent diet. Some endowed with resilient B-cells
sustain long-lasting oversecretion, compensating for
the insulin resistance, without lapsing into overt dia-
betes. Some with labile beta cells exhibit apoptosis
and lose their capacity of coping with insulin re-
sistance after a relatively short period. The wide
spectrum of response to insulin resistance among
different diabetes prone species seems to represent
the varying response of human beta cells among the
populations. In search for the molecular background
of insulin resistance resulting from overnutrition we
have studied the Israeli desert gerbil Psammomys
obesus (sand rat), which progresses through hyper-
insulinemia, followed by hyperglycemia and irre-
versible beta cell loss. Insulin resistance was found
to be the outcome of reduced activation of muscle in-
sulin receptor tyrosine kinase by insulin, in associa-
tion with diminished GLUT4 protein and DNA
content and overexpression of PKC isoenzymes, no-
tably of PKCe. This overexpression and translocation
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to the membrane was discernible even prior to hy-
perinsulinemia and may reflect the propensity to dia-
betes in nondiabetic species and represent a marker
for preventive action. By promoting the phosphory-
lation of serine/threonine residues on certain pro-
teins of the insulin signaling pathway, PKCe exerts a
negative feedback on insulin action. PKCe was also
found to attenuate the activity of PKB and to pro-
mote the degradation of insulin receptor, as deter-
mined by co-incubation in HEK 293 cells. PKCe
overexpression was related to the rise in muscle dia-
cylglycerol and lipid content, which are prevalent
on lascivious nutrition especially if fat-rich. Thus,
Psammomys illustrates the probable antecedents of
the development of worldwide diabetes epidemic in
human populations emerging from food scarcity to
nutritional affluence, inappriopriate to their meta-
bolic capacity.
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strate; LE, low energy; P13K, phosphoinositol-3-kinase;
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kinase B; PKC, protein kinase C; PTPase, protein tyrosine
phosphatase; SDS-PAGE, sodium dodecyl sulfate polyacryl-
amide gel electrophoresis; TG, triglycerides; TK, tyrosine
kinase; TPA, tetradecanoyl phorbol acetate
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INTRODUCTION

This lecture is dedicated to the memory of
Albert Renold (Fig. 1). I shall not dwell on his
biography, which is well known to most of us. I
would like just to say that he was endowed with
a generous personality, free of any scientific or
personal prejudice, and unbound enthusiasm for
experimental research of diabetes. His leader-
ship capacity, art of dialogue and negotiations,
enabled him to establish the EASD in 1965 and
perform outstandingly as the President of IDF
1979-1983. He attracted a cohort of renowned
international scientists to his Geneva Depart-
ment, and created there a European Mecca of
diabetes research and teaching from which close
to 500 outstanding contributions emanated. He
passed away suddenly on March 21, 1988, about
13 years ago.

I had the privilege to share with him the ex-
citement of experimental diabetes research, in
animal models and to launch in 1982 the Inter-
national Workshops on Lessons from Animal
Diabetes in Jerusalem, (Fig. 2) which have con-
tinued to take place in several locations, and to-
day, the 8th Workshop, in Tokyo.

Albert Renold strived to gain insight into the
abnormalities of human diabetes by defining
the pathophysiology of the disease peculiar to
a given animal. He was convinced that the
elucidation of pathogenesis of human diabetes
will be better understood by the integration

FIGURE 1 Professor Albert E. Renold in his laboratory at
the Institute de Biochimie Clinique in Geneva.
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FIGURE 2 Professors A. E. Renold and E. Shafrir with
Vol. 1 of the Lessons from Animal Diabetes book series in
the background.

of pathogenesis of several genetically transmit-
ted or experimental diabetes syndromes. His
belief was that whether induced by surgical,
chemical, endocrine, immunologic or genetic
treatments, models of diabetes can be extremely
informative and helpful, but may be misinter-
preted by equating a single model with human
diabetes.[!! With the advances in research, it may

~ be said that the existence of numerous variants

of animals with characteristics close to Type 2 di-
abetes allows to uncover different mechanisms
leading to insulin resistance, B-cell demise, dis-
rupted glucoregulation and species specific com-
plications. Consolidation of this knowledge may
pave the way to classification of human diabetes
into better defined entities.

Among the models Renold investigated were
the Israeli desert-derived spiny mice (Acomys
cahirinus), (Fig. 3) which became obese on fat-rich
seed diet. After a few months B-cell hyperplasia
and hypertrophy developed leading to a sudden
islet rupture and resulting in ketosis and insulin
deficiency. Prior to overt diabetes spiny mice
exhibited only intermittent hyperglycemia and
impaired glucose tolerance. They were char-
acterized as “low insulin responders”. Different
secretagogues failed to elicit sufficient B-cell
insulin response. This was attributed to several
anatomic and biochemical features of their -
cells, e.g.,, low adenylate cyclase activity, low
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FIGURE 3 A spiny mouse (Acomys cahirinus) compared
with an albino mouse.

cAMP content, low amount of vincristine precip-
itable material in microtubules through which
insulin is extruded and low innervation (re-
viewed in 2,3). These properties were initially
attributed to a genetic mutation, which might
have occurred during 15 years and 40 genera-
tions of maintenance in captivity on fat-rich seed
diet. However, it is now most probable that these
are typical characteristics of desert animals sub-
sisting on scarce nutrition requiring only limited
capacity of insulin response.¥! The low insulin
response to glucose and other secretagogues may
be a protection against B-cell overstimulation by
sudden availability of nutrients with which
spiny mice organism is unable to cope.

A particular characteristic of the spiny mice was
the proliferation of B-cells within islets, accom-
panying the obesity. The islets increased several

FIGURE 4 Pancreas section of spiny mouse showing hy-
pertrophied islets of Langerhans maintained on fat rich seed
diet for 12 months. The arrow points at hypertrophic islets
in an irregular shape, filled with B-cells. Hematoxylin eosin
stain, magnification 50x. Adapted from Ref. [96].

fold in number, diameter and pB-cell content
(Fig. 4). The resulting very high density of B-cells
in the islets was the highest in comparison with
other diabetic obese species (Fig. 5). Thus, spiny
mice represent a particular example of obesity as-
sociated with enormous enlargement of islets.
Among the protective mechanisms which spiny
mice were able to mobilize to cope with the in-
creased nutrient intake were increased plasma
levels and hepatic production of triiodothyro-
nine (T;) which induced some energy waste and
was especially evident on high sucrose diet
(Tab. I).33]

Genetically Endowed Secretion Capacity
Determines the Quality of g-Cells

Other species respond differently to affluent
nutrition. Among the responses of B-cells to
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FIGURE 5 Percentage of islets in the pancreas of several
obese-diabetic mice compared with an albino mouse as a
control. The density of islets in spiny mice is many fold
higher than that of ob/ob, NZO, yellow KK mice, than of
albino mice. Despite high density of islets in the pancreas,
the spiny mice are low insulin responders, whereas the other
species are insulin oversecretors. Adapted from Gonet et al.,
Diabetologia, 1:162—171, 1965.

TABLEI Effect of sucrose-rich diet on serum T and hepatic
T, — T, conversion in spiny mice

Spiny mice Serum T, Liver T, Ty,— T,
diets: ng/ml ng/liver  ng/min per liver
Standard 1.05+0.09 35+3 095+0.18
50% sucrose 1.48 +£0.10* 69 £ 5* 2.09 +0.28*

Values are means = SE measured after 6 weeks on sucrose
diet; *P<0.01 at least; Liver wt, g/100g body wt 3.1:0.2
standard, 4.6 0.3 sucrose.
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highenergy (HE) diets we can observe syndromes
of diabesity (diabetes + obesity), some of them
withstanding and some of them succumbing to
the induced insulin oversecretion. There exists a
wide spectrum of B-cell response capacity, listed
in Table II. Several animal species are endowed
with sturdy, resilient B-cells and other with brit-
tle, labile B-cells. Table II indicates that diabetic
animals endowed with resilient B-cells exhibit
only moderate elevation of blood glucose levels
and a capacity of longlasting insulin secretion,
whereas those with labile B-cells show transient
control of plasma glucose levels by oversecretion,
followed by marked hyperglycemia, apoptosis
and collapse of B-cells on protracted stimulation
of insulin secretion. Hyperinsulinemia in animals
endowed with robust B-cells, often associated
with hyperphagia, promotes obesity by shunting
of nutrients to lipogenesis. Such a shift of glucose
to fatty acid synthesis may be looked upon as an
antidiabetic measure, moderating the hyper-
glycemia, which may protect B-cells from gluco-
toxicity at the expense of obesity.

TABLEII Animals with longlasting vs. transient capacity of
insulin hypersecretion

Resilient B cells Labile B cells

C57BL/ 6] ob/ob mice C57BKS db/db mice

Zucker faffa rats Psammomys obesus (sand rat)
OLETE rats

WKY rat group M. mulatta (rhesus monkeys)

Corpulent cp rat strains
KK mice

NZO mice

Persistent hyperinsulinemia
compensating the insulin
resistance lasts for life;
high regranulation and
mitosis of B cells results

in hypersecretion and
extremely high insulin
levels which shunt glucose
to lipogenesis. Thus,
hyperglycemia is
moderate at the expense
of remarkable obesity.
Sustained insulin
oversecretion reduces

FFA release from adipose
tissue, preventing g

cell lipotoxicity.

ZDE/Drt fa rats

B cells transiently proliferate
and oversecrete producing
a short-lasting weight gain.
Then, the degranulation
predominates; regeneration
and replacement by
neogenesis fail to offset

the cell loss. There is
marked B cell sensitivity

to hyperglycemia,
intracellular lipotoxicity
and detrimental genomic
factors. The collapse

of the insulin secretion
apparatus and apoptosis
may be prevented

by diet restriction.
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Type 2 diabetes has often been looked upon
as a genetic failure of B-cells to compensate for
insulin resistancel® which is true for animals
and humans alike. However, this statement
does not mean that type 2 diabetes, in humans
or animals, is caused by primarily inferior B-
cells. Insulin resistant subjects maintain normal
glucose tolerance by adaptive hypersecretion of
insulin, thereby compensating for the reduction
in sensitivity to insulin. In certain individuals
these compensatory mechanisms deteriorate
with time and overt diabetes supervenes. It is
apparent that in these individuals B-cells are ge-
netically not constructed to sustain the demand
of oversecretion and are affected by various
other genomic factors accentuating the hyper-
glycemic stress and B-cell exhaustion.®! Our
lesson from animal diabetes, which may be im-
plied for humans, is that insulin resistance con-
stitutes the primary cause of 8-cell overtaxation.
If the compensatory insulin oversecretion is
mild or preventable, even the labile g-cells may
last for life.

Nutritionally Induced Diabetes
in Psammomys obesus

We have devoted particular attention to the ger-
bil Psammomys obesus (often nicknamed sand rat)
The main native nutrient of Psammomys is a
leafy halophilic plant, Atriplex halimus, (salt-
bush) (Fig. 6). This gerbil never exhibits diabetes
in its native desert habitat but was known to de-
velop fatal diabetes when transferred from the
Nile Delta in Egypt to the USA.! In the 1980s
Adler and colleagues have transferred Psam-
momys from the desert shores of the Dead Sea to
the laboratory,'%!!! maintaining the animals on
low energy (LE) diet, and succeeded to establish
a stable, reproducible colony. The animals
became diabetic on standard laboratory diet,
which is high energy (HE) with respect to Psam-
momys (Fig. 7). The animals are not hyperphagic
but when offered their diet ad libitum gradually
lapse from normalcy (stage A) into stages of
hyperinsulinemia (stage B), hyperinsulinemia
with hyperglycemia (stage C), and insulin
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FIGURE 6 Adult Psammomys obesus from the Dead Sea re-
gion nibbling on salt bush, his native diet. Courtesy of
Mr. Barak Negan from Teva Hadvarim magazine.
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FIGURE 7 Composition of Psammomys diets.

LE =low energy diet; HE = high energy diet, about 25%
higher in digestible caloric energy mainly of the carbohy-
drate fraction.

deficiency with B-cell apoptosis and necrosis
(stage D). The main course of diabetes pro-
gress in Israeli Psammomys is shown in Figure 8
and described in detail in several publica-
tions and reviews.?-14 Similar observations of
the progress to diabetes have been published
regarding Psammomys from Algerial®™ and a
branch. of Israeli Psammomys colony bred in
Australia.l’¢17! It should be emphasized that in-
sulin resistance and hyperinsulinemia appear
before weight gain in Psammomys but they may
contribute to adipose tissue accretion, a condi-
tion which we term: diabesity. Triglyceride dep-
osition in adipose and nonadipose tissues,
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FIGURE 8 Scattergram illustrating the horseshoe pattern of
progression of Psammomys from normalcy (Stage A) to hy-
perinsulinemia (Stage B), hyperglycemia (Stage C) and hy-
poinsulinemia with marked hyperglycemia (stage D). The
distribution of glucose and insulin values has been deter-
mined in 37, 19 week old Psammomys from a general unse-
lected colony. With time most of the animals progressed to
stages C and D. Courtesy of Dr. G. Collier, Deakin Univer-
sity, Victoria, Australia.

primarily muscles is driven by hepatic lipogene-
sis, which continues unabated despite insulin re-
sistance, as demonstrated in rats.'®! Beacon
hypothalamic gene recently discovered by
Collier and colleagues!'®?% promotes diabesity
on ad libitum feeding. It is remarkable that the
progress of Psammomys to diabesity may be re-
versed by reducing the nutrition for just a few
days, in stage C, before apoptosis and S-cell de-
granulation set in. The recovery by diet restric-
tion has been described in our colony? and in
Psammomys bred in Australia.?

Psammomys maintained on HE diet for a few
weeks undergoes massive B-cell degranulation,
loss of insulin immunostaining, apoptosis and
necrosis set in.2-?1 J6rns and colleagues® have
followed in recent ultrastructural studies the
time course of progression of Psammomys to dia-
betes. A gradual loss of B-cell insulin, glucoki-
nase and GLUT2 transporter immunoreactivities
was visualized, occuring subsequently to hyper-
glycemia. After one week on HE diet the B-cell
volume became reduced by about 1/3 and im-
munostaining of glucokinase, and GLUT2 by
>50% (Fig. 9). After 3 weeks on HE diet this
reduction became 70-95% in correlation with the
rising blood glucose level. Ultrastructurally
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FIGURE9 Immunocytochemical studies of time course of changes in B-cells of Psammomys. Adapted from Jorns et al., Ref. [28].
Set 1: Control pancreas from Psammomys on LE diet. Semithin sections stained for insulin, glucokinase (cytoplasm) and GLUT2
transporter (membrane). Magnification 300x; Set 2: Hyperinsulinemic Psammomys after one week on HE diet. Compared with
control pancreas the immunoreactivities of insulin glucokinase and GLUT2 are fainter and moderately reduced. GLUT2 exhibits
large gaps. Magnification 400x; Set 3: Hyperglycemic, hyperinsulinemic Psammomys after 1 week on HE diet. The immunoreac-
tivities of insulin, glucokinase and GLUT2 are markedly decreased compared with nonglycemic hyperinsulinemic animal. Only
a few cells exhibited immunostainable insulin. Magnification 500x; Set 4: Hyperglycemic Psammomys after 3 weeks on HE diet.
Extensive B-cell death. The remaining B-cells show vacuolization and very faint immunostaining for insulin and glucokinase.
GLUT2 is present in the cytoplasm rather than membrane. Magnification 800x.

different signs of necrotic destruction of pancreatic
B-cells such as the pyknosis of nuclei and a mas-
sive vacuolization in the cytoplasm were evident.
These findings were accompanied by swollen mi-
tochondria and dilated cisternae of the Golgi com-
plex and of the rough endoplasmic reticulum. At
one week on the HE diet most secretory granules
were still intact even in the face of marked de-
granulation. Other endocrine cells of the islet did
not show structural lesions. These changes in -
cells were particularly severe in animals after 3
weeks on the HE diet.

The B-cells in the pancreas removed from hy-
perglycemic, insulin deficient animals (stage D),
after several weeks on HE diet were also found to
exhibit apoptosis and DNA cleavage®-?°! (Fig. 10).
DNA fragments were seen in the cell nucleus and

INTERNATIONAL JOURNAL OF EXPERIMENTAL DIABETES RESEARCH

in the cytoplasm. Also Donath et 4.2 and Nesher
et al.”’) have observed both apoptosis and necrosis
in pancreases removed from Psammomys after sev-
eral weeks on HE diet. It is relevant that S-cell
apoptosis was also evident in the diabetic, obese
hyperphagic ZDF rats./*”!

Figure 9 clearly shows that the HE diet in-
duced pancreatic B-cell dysfunction in the Psam-
momys and disintegration of cellular architecture
as a consequence of developing hyperglycemia.
Hyperinsulinemia by itself does not appear to be
responsible for the observed deterioration of the
pancreatic B-cell function, except by the imposed
oversecretion. Prolonged incubation of isolated
B-cells from ZDF rats!® and from humans®! in
high glucose media markedly impaired basal
and stimulated insulin secretion. Unger®® also
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FIGURE 10 -cell apoptosis in stage D Psammomys revealed
by Tdt-mediated dUTP nick end labeling (TUNEL) and
staining of the biotin labeled DNA cleavage nick ends with
3-aminoethyl carbazole. Note the nuclear fragmentation and
spreading of nuclear fragments in the cytoplasm, indicated
by the brownish flecks. Magnification 500x. Reproduced with
permission of the Editor of Pancreas, Ref. [18].

pointed out the deleterious effect of FFA and
triglyceride (TG) accumulation in B-cells on the
insulin secretion function in ZDF rats, termed by
him as “lipotoxicity”.

There is no direct evidence for the involvement
of gluco- or lipotoxicity in the necrosis of B-cells
in Psammomys unlike the findings in ZDF rats.
An attempt to prevent the possible toxic action of
advanced glycation end products or of nitrous
oxide by including the advanced glycation in-
hibitor, aminoguanidine in the hyperglycemic
incubation medium was not effective in protect-
ing B-cells in Psammomys.””! However, Kaneto
et al.®® obtained evidence that reducing sugars
may trigger apoptosis in B-cells of albino rats by
provoking oxidative stress of glycation products.
In their hands the antioxidants N-Acetyl-L-
cysteine and aminoguanidine inhibited the
apoptosis. We presume that the damage to S-cell
architecture with loss of the insulin biosynthetic
and secretory capacity in Psammomys occurs
promptly and is most probably the result of ex-
haustion chiefly due to the hypersecretion pres-
sure prior to eventual cytotoxicity.

Psammomys in stage C shows increased proin-
sulin levels in the circulation, up to one half of
the circulating immunoassayable total insulin.[*!

The inordinate secretion pressure may cause a
swift exocytosis of immature insulin granules es-
caping the C peptide cleavage before the release
into the circulation. Similar disproportionate ele-
vation of proinsulin in human and experimental
type 2 diabetes and insulin resistance has been
observed.?! This indicates, on one hand, that the
compensation of the delayed glucose removal
or suppression of gluconeogenesis are not effec-
tive since proinsulin has only a minute fraction
of insulin activity. On the other hand, the high
level of circulating proinsulin does not mean that
its secretion equals that of insulin since the half-
life of proinsulin is much longer than that of
insulin.®!

Insulin Resistance and Tyrosine Kinase
Attenuation in Psammomys obesus

Attenuation of tyrosine kinase (TK) is the basic
event responsible for deficient function of the in-
sulin receptor (IR) causing insulin resistance. To
investigate the development of insulin resistance,
the activity of TK, the initiator of insulin signaling

- pathway was studied in the liver and muscle of

Psammomys. Kanety and colleagues?®”! found that
the binding of insulin to the liver and muscle
preparations was very low, even in stage A, indi-
cating the low IR content, about one fifth of the
laboratory albino rat. However, insulin binding
and TK activity per receptor was completely nor-
mal, both in vitro and in vivo. The TK activity was
measured in stages B and C of progression to dia-
betes as compared to the normoglycemic stage A.
Basal phosphorylation of the isolated IR was com-
parable in these stages to that in the normo-
glycemic stage A, but the extent of TK activation
by insulin was markedly lower in stages B and C
in the liver and muscle (Fig. 11).*” The reduced
insulin activation was accompanied by a marked
decrease in muscle GLUT4 protein and mRNA
(Fig. 12). Both could be reversed by nutritional
restriction to one half of their daily food intake
for a few days. The recovery of TK activity was
complete when the animals returned to normo-
insulinemia. The recovery was partial when
hyperglycemia was corrected but the insulin
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FIGURE 11 Activation of tyrosine kinase in isolated insulin
receptors from muscle and liver of Psammomys at stages A, B,
and C. Stages B and C are compared to stage A and the full or
partial recovery on diet restriction is marked Rec A and Rec B.
Receptors were purified on wheat-germ agglutinin and the
phosphorylation of poly(glu:tyr)4:1 subsirate in the presence
of 50uM [¥?P]ATP was determined before and after stimula-
tion with insulin and expressed as percentage change of the
basal activity. Adapted from data of Kanety e al., Ref. [37].

GLUT 4 protein GLUT 4 mRNA

B .t
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FIGURE 12 Western blot of membranal GLUT4 protein and
mRNA in gastrocnemius muscle of Psammomys on HE and
LE diets. Densitometry indicated a mean decrease in stage C
Psammomys to 40% (protein) and 20% (mRNA) of values in
stage A. Adapted from Ref. [50].

levels did not return to normal (Fig. 11). This find-
ing points out the attenuating effect of hyperinsu-
linemia on the function of the IR, indicating that it
is an important cause of insulin resistance.

Deleterious Effect of Hyperinsulinemia
on IR Function

The deleterious effect of hyperinsulinemia, even
in non-nutritionally induced conditions, can be
demonstrated in several animal species and hu-
mans. A few cogent examples can be quoted.
Transgenic mice enriched with 8 or 32 insulin gene
copies, resulting in circulating hyperinsulinemia,
exhibited both IGT and hypertriglyceridemia in
correlation with the amount of insulin gene copies
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in their B-cells (Fig. 13).°¥! In other transgenic mice
insulin oversecretion was related to deleterious
overexpression of glutamine: fructose 6 phosphate
amidotransferase associated with B-cell malfunc-
tion.®! Hyperinsulinemia and insulin resistance
was also achieved by targeted disruption of genes
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FIGURE 13 A. Intraperitoneal glucose tolerance (2mg glu-
cose/g) in transgenic mice transfected by pronuclear microin-
jection with 8 or 32 copies of human insulin gene. Age 10-12
months, mean=*SE of 9 determinations. Controls were non-
transgenic litter mates. B. Correlation between rising plasma
insulin and triglyceride levels in transgenic mice. O control.
@ 8 gene copies. A 32 copies of insulin gene. r=0.577,
P <0.001. Adapted from S. L. Marban and J. Roth, Lessons
from Animal Diabetes 5, 201-204, 1996.
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encoding the insulin signaling and glucose trans-
port molecules in mice, e.g., IRS and GLUT4 as
recently reviewed by Sone et al.[0]

Miles et al. 1 have show that protecting the in-
sulin from hepatic degradation by diversion of
pancreatic blood flow through anastomosis with
vena cava in healthy dogs induced a sustained
hyperinsulinemia. The hyperinsulinemia resulted
in marked insulin resistance evident from the
30% reduction in peripheral glucose disposal rate.
The resistance was localized to IR/TK, the maxi-
mal activation of which by insulin decreased to
12.7 1.7 vs. 20.3 +2.7 fmol phosphate/fmol IR in
control dogs, a reduction of about 40%.

Among other detrimental results of hyperinsu-
linemia is the uncoupling of the TK activity in
3T3 cells after initial activation.[?! In HepG2 cells
the activation of IR TK by insulin was attenuated;
only incompetent receptors remained on cell sur-
face!®] and in rat adipocytes the V,, of TK was
reduced.® Tt was also found that hyper-
insulinemia inhibits myocardial protein degrada-
tion in patients with cardiovascular disease,
which is a potential mechanism contributing to
cardiomegaly!®® Hyperinsulinemia of endoge-
nous or exogenous origin should be considered,
also in humans, not only as a compensatory re-
sponse to insulin resistance, but as an inducer of a
defect in insulin action. In nondiabetic human
volunteers the infusion of insulin for several days
followed by euglycemic hyperinsulinemic clamp,
resulted in the reduction of nonoxidative whole-
body glucose metabolism by up to 40%.14¢! Also,
patients with insulinoma exhibited insulin re-
sistance that was related to the extent of their
hyperinsulinemia./*”! Furthermore, fasting hyper-
insulinemia in diabetes-prone Pima Indians has
been found to exert a primary role in the progress
to type 2 diabetes by being the antecedent of the
decline in response to i.v. glucose load. 8!

Overexpression of PKC — A Negative
Feedback in Insulin Signal Transduction

Protein kinase C (PKC) in the gastrocnemius
muscle of Psammomys was found pronouncedly
overexpressed.*%°! This enzyme group has now

become widely studied because of their preferen-
tial phosphorylation of serine and threonine re-
sidues on cellular proteins, thus leading to the
malfunction of IR and of other proteins active in
this pathway.®] The PKC group includes at least
11 isoforms, among them, the so-called conven-
tional PKCe, B1, B2 and v, which are DAG sensi-
tive. The novel isoforms, PKC 8 ¢ n 6 are also
DAG sensitive. The atypical forms { and A are
DAG insensitive. Some of these isoenzymes
have been termed “lipid second messengers” be-
cause of their DAG dependence.? Attribution of
a specific function to an PKC isoenzyme has not
been yet firmly established. Several isoenzymes
forms may mediate a similar range of functions.
Among the several PKC isoenzymes probed with
specific antibodies PKCe was most significantly
overexpressed in the skeletal muscle of Psam-
momys, in the hyperglycemic-hyperinsulinemic
stage C compared with the nondiabetic stage A
(Fig. 14). It was also translocated from the cytosol
to muscle membrane to a larger extent than other
PKC isoenzymes, which indicates not only PKCe
overexpression but increased activity as well.*!
As shown in Table III about 1/3 of total PKCe cell
content resides in the membrane fraction. PKC6

PKC o
PKC B1
PKC B2
PKC §
PKCe
PKCn
PKCo
PKC1
PKC{

o
@]

FIGURE 14 Immunoblots showing the membranal content
of PKC isoenzymes in gastrocnemius muscle of Psammomys
obesus. Note the overexpression of PKCe. C = control, D=
diabetic stage C. Courtesy of Dr. Luitgard Mosthaf-Seedorf.
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TABLE Il Subcellular distribution of PKC isoenzymes in
Psammomys muscle: membrane/total (%)

DR DP/A DP/C

PKCa 26.1+59 316+41 39.6 £1.7*
PKCB 12.8+2.0 17.7+2.6 208 £1.3*
PKCBy 265+37 321*+6.8 34.7+3.1
PKCe 267+ 1.6 275%15 335+ 0.7
PKCeo 72924 729+4.0 65.5*+1.9
PKCn 16.4+3.1 16.1 £4.9 188*1.6
PKC{¢ 358+5.0 344+6.0 39.6+34

Values are means=*SE; *DP/C vs. DR P<(.005; **P <0.01;
*P<0.001; *P (DPC vs. DPA)<0.01. Reproduced from Ikeda
et al.*! with permission.

showed highest degree of membrane association
in Stage A Psammomys but was surprisingly low in
Stage C. The membranal PKCa and 8 were also
elevated. PKC{ was elevated but did not change
between stages A and C. PKC y and { (the atypical
isoenzymes) are known to promote phosphoryla-
tions integral to the insulin signal transduction.
We have compared the expression of several
PKC isoenzymes in diabetes resistant (DR) and
diabetes prone (DP) Psammomys lines. The DR
line was isolated from the parent Psammomys
colony by assortative mating of individuals,
which did not exhibit hyperglycemia and hyper-
insulinemia on HE diet.®® It was found that the
difference between the DR and DP animals is re-
lated to the efficiency of nutrient utilization: the
cost of weight gain upon growth is in Psam-
momys DR =9.3kcal/g and DP = 6.0kcal/g. In-
terestingly, a significant overexpression of PKCe
was also observed in the normoglycemic stage A
of DP Psammomys compared with the DR line
(Fig. 15), which indicates that PKCe overex-
pression precedes the onset of overt insulin
resistance. Thus, PKCe overexpression in stage A
may be considered as a marker of “prediabetic”
or “preinsulinemic” stage and of propensity of a
given individual to progress to overt diabetes on
affluent nutrition. It is, however, without unto-
ward consequences as long as the diet is LE.
Additional evidence of the innate insulin re-
sistance in stage A Psammomys was demonstrated
by the failure of external insulin administration to
effect hypoglycemia. Insulin also failed to sup-
press in stage A Psammomys the activity of hepatic
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FIGURE 15 Overexpression of PKCe in stages A and C of
Psammomys muscle compared to the diabetes resistant line
(DR). Note a significant overexpression of PKCe already in
normoglycemic-normoinsulinemic stage A of diabetes-prone
line of Psammomys indicating the innate insulin resistance
preceding the onset of diabetes, without consequences on
the LE diet.

Control

+ Insulin implant

Rat + Insulin implant

FIGURE 16 Hepatic glucose output (HGO) in Psammomys
stage A after s.c. administration of insulin implants releasing
2U insulin/24 h with glucose levels reaching about 300mU/1
at 4 hours. The white section of the circle denotes the non-
suppressed HGO. Note the inability of insulin to suppress
the HGO respective to control stage A Psammomys, whereas
it almost completely shuts off the glucose output in the
albino rat and renders the rat deeply hypoglycemic. The ac-
tivity of hepatic phosphoenolpyruvate kinase was also not
reduced by the insulin, confirming the inherent insulin re-
sistance in stage A Psammomys. Based on Ref. [54].

PEPCK, the rate limiting enzyme of gluconeo-
genesis,®! as well as the hepatic glucose output
(Fig. 16). This may be a typical characteristic
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of a desert animal in which muscle insulin re-
sistance saves glucose for the support of other
glucose obligatory tissues.

Since PKCe overexpression resulted in im-
paired TK activation by insulin and reduced
GLUT4 mRNA and protein, which indicates an
impaired PI3K activation, it was of interest to in-
vestigate whether PKC overexpression induces a
further negative downstream defect in insulin
signaling. The activity of PKB/Akt was deter-
mined, an enzyme regarded as responsible for the
activation of pleiotropic metabolic systems within
the cell, subsequent to PI3K activakon on IRS.
The transfection of HEK 293 cells with IR and/or
PKCe plasmids, followed by stimulation with in-
sulin or TPA respectively, clearly showed the acti-
vation of PKCe by TPA coupled with a significant
reduction of PKB expression and inhibition of
PKB activation (Fig. 17). These results indicate
that PKCe inhibits PKB activation by insulin and
has a far-reaching negative effect on metabolic re-
actions dependent an insulin signaling as illus-
trated in the insulin signaling scheme (Fig. 18).

Transfection IR IR IR IR/PKCe IR/PKCe

1.2

Relative Expression
(=
-

TPA+Ins Ins

Stimulation - Ins TPA+Ins

BIR E pAkt/Akt

FIGURE 17 Attenuation of protein kinase B (PKB) by con-
tact with PKCe. Human embryonic kidney cells (HEK293)
were transfected with IR and PKCs expression plasmids to-
gether or alone and incubated overnight in medium con-
taining 0.5% fetal calf serum. The cells were left untreated
or stimulated with 10~7mol/] insulin for 5min or treated
with 1wmol/l TPA for 6h before insulin stimulation. Cell
lysates were subjected to SDS-PAGE, and incubated with spe-
cific antibodies against IR B-subunit, Akt, or phospho-Akt
(Ser 473). Proteins were made visible using horseradish-
peroxidase-coupled secondary antibodies and chemilumines-
cence. The diagram shows means =SD of three independent
experiments. The data are normalized to the expression of
cells transfected with IR alone and stimulated with insulin.
From Ikeda et al., Ref. [49] (with permission).

@ INSULIN

Translocation
activation

1

Nuclear signaling

MITOGENESIS Metabolic effects

FIGURE 18 Insulin signaling scheme pointing to the PKCe
effects on tyrosine kinase, PI3K and PKB activities. The latter
is responsible for activation of multiple metabolic systems.

The activity of PKC isoenzymes in the mem-
brane, in IR proximity, may be the reason for the
inhibitory influence on the IR TK activation.
Several PKC isoenzymes were reported to re-
duce the TK catalyzed phosphorylation of the IR
B-subunit and IRS-1.I5-%1 We have found that
PKCe overexpression was associated with re-
duced binding of insulin by muscle IR (Fig. 19).
This was not likely to be attributed to the im-
paired binding capacity of IR but to the reduc-
tion in the number of IR per cell. Indeed, the
downregulation of IR was demonstrated in HEK
293 cells which were transfected with human IR
and PKCe plasmids and activated by TPA (Fig.
20). Evaluation by densitometry showed that

300
r=-0.481
e _ P <0.05
5 8 2507
£ 3
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=
= ep 2007
:
m £
& & 1507

1005710 20 30 40 50 60 70
PKCg associated to PM fraction
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FIGURE 19 Reduced insulin binding by muscle of Psam-
momys in stage C measured by ELISA assay. Linear regression
analysis of PKCe associated to plasma membrane fraction
versus Pl-insulin binding in muscle homogenates. n =22,
P<~0.05. From Ref. [49] with permission.
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FIGURE 20 Insulin receptor degradation effected by PKCe
overexpression. HEK 293 cells were transfected with IR and
PKC¢ expression plasmids either alone or in combination
and incubated overnight in a medium containing 0.5% fetal
calf serum as a control. Glutamine S transferase construct
was co-transfected in all samples. The cells were treated with
1mmol/1 TPA as indicated. Cell lysates were then subjected
to SDS-PAGE and incubated with anti-IR-specific antibodies.
Proteins were visualized using horseradish peroxidase-
coupled secondary antibodies and chemiluminescence. The
upper rows show PKCe expression with and without IR. The
lower rows GST expression levels as control. Quantitation as
percentage of control has been performed in 6 independent
experiments showing a decrease in the IR content in the
presence of TPA-activated PKCs, to 30% of control. P>0.001
vs. both IR alone and IR +PKCe unstimulated samples.
Reproduced from Ikeda et al., Ref. [49] (with permission).

after 6h of TPA activation the amount of IR was
reduced to about 40% of the original number.
This is in accord with previous observations of
downregulation of IR, by the conventional
PKCal® and possibly other DAG sensitive PKC
enzymes.

Several in vitro studies indicate that PKC isoen-
zymes directly interfere with insulin signaling
through serine/threonine phosphorylation of ei-
ther the IR itself or one of its major sub-
strates.2-% PKC may also mediate the tumor
necrosis factor (TNFea) inhibition of IR function,
the major cause of diabesity-linked insulin
resistance.>%] TNFa was reported to induce
phosphorylation of IRS-1 on serine 307.1] Inter-
estingly, high insulin levels also induced the
phosphorylation of this serine in association with
insulin resistance in signal transduction. This ob-
servation suggests the possibility of PKC involve-
ment. Several other serine sites have been
indicated to be phosphorylated on IR or IRS with
negative effects on signal transduction.[®-7 Mus-
cle PKC activation was also seen in insulin re-
sistant Goto-Kakizaki rats.” It may be therefore
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assumed that serine/threonine phosphorylation
of IRS-1, inhibits the TK activity of the IR via a
feedback loop and is responsible for the deficient
TK activation by insulin in Psammomys as de-
scribed earlier,® with insulin resistance accentu-
ated at stages B and C on the HE diet.

PKCe Overexpression and Muscle
Lipid Content

The enhanced PKCe activity and/or expression
in Psammomys was found to be correlated with
the increased muscle content of DAG (Fig. 21).1#]
DAG is an intermediate of both fatty acid esteri-
fication to TG and TG breakdown to fatty acids
and glycerol. The raised muscle concentration of
DAG results from increased TG deposition and
turnover in muscle, which occurs in the situation
of hyperinsulinemia and hyperglycemia, charac-
teristic of stages B and C of Psammomys. An in-
crease in incorporation of glucose carbon into
DAG was also seen in the soleus muscle incu-
bated with glucose and insulin/”? probably in re-
lation to increased intracellular TG synthesis.
Also, the rise in plasma FFA in conditions of IGT
may contribute to muscle fat deposition. Indeed,
in vitro uptake of saturated FFA was recently re-
ported by Yu et al.l”®! to raise rat muscle DAG
levels and lead to PKC activation (Fig. 22). Ex-
ogenous lipid infusion in rats resulted in the

80
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Y40
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0 100 200 300
DAG, pmol/mg

FIGURE 21 PKCeg activity correlated to intracellular con-
tent of diacylglycerol (DAG) in the gastrocnemius muscle of
Psammomys. Note a high correlation coefficient of both mem-
brane associated PKCe and PCKa with muscle DAG content.
Among other PKC isoenzymes only PKCa showed a simi-
larly significant inverse relationship. Reproduced from Ikeda
et al., Ref. [49] (with permission).
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FIGURE 22 FFA uptake and muscle DAG content. Time
(A) and concentration (B) dependent increase in diacylglyc-
erol (DAG) in cultured smooth muscle cells incubated with
palmitate. Results are means+SE from 3 separate experi-
ments in triplicate normalized by cell number. Asterisks
denote significance at P<0.05 and <0.01 compared to the
basal DAG value. Reproduced from Ref. [71] with permis-
sion of Diabetologia, Springer Verlag.

deposition of a significant fraction of fatty acids
in muscle, particularly in the fasted statel’!! and
FFA infusion to human subjects was found to
elicit insulin resistance and activation of PKC6.%!
Muscle TG content is also increased in patients
with type 1 diabetes although it did not correlate
in this condition with insulin sensitivity.”®
Increased TG deposition in muscles was stud-
ied extensively by Kraegen and colleagues”’-"’!
in rats maintained on a fat-rich diet. Insulin resist-
ance developed in these rats both in muscles
and liver. The hepatic insulin resistance was asso-
ciated with increased gluconeogenesis, whereas

the muscle insulin resistance markedly reduced
the insulin stimulated glucose uptake. The accu-
mulation of muscle fat was inversely correlated
with insulin resistance and delayed glucose
disposal also in human subjects.® Schmitz-
Pfeiffer et al.B% found that in high fat fed rats, TG
and DAG accumulated in muscle and activated
PKC isoenzymes interfering with IR function.
The total expression of PKC a, ¢ and { isoen-
zymes was not increased in muscles of these
rats but their activity and distribution between
cytosolic and membrane compartments was
shifted in favor of the latter. This was partic-
ularly prominent in the case of PKCe showing a
sixfold increase in the membrane/cytosol ratio in
correlation with muscle TG content (Fig. 23).
There was no accumulation of TG and DAG in
control rats fed a starch diet. Also in Psammomys
the muscle and liver TG content increased on HE
diet but the increase was moderate in compari-
son with fat-fed rats (Fig. 24).! This does not
necessarily mean that muscle lipid deposition is
a result of outright obesity, but even a small
weight gain usually occurring prior to marked
hyperglycemia in Psammomys leads to TG deposi-
tion, also in nonadipose tissues.

Protein Tyrosine Phosphatases
and Muscle Insulin Resistance
in Psammomys

Goldstein and colleagues® %! have reviewed the
mode of action of PTPases and their impact on
the regulation of IR signaling by modulating
the tyrosine phosphorylation state of IR and of
proteins that transmit the insulin signal. PTP1B is
considered to play a key role in glucose home-
ostasis and energy expenditure and has been
pointed out as an important negative regulator of
insulin action.®3-%! Mouse transgenic and knock-
out models with altered expression of LAR
(Leukocyte Antigen Related), PTP1B and SHP-2
PTPases generated additional insight into the in-
volvement of these regulatory enzymes in insulin
action and glucose metabolism. LAR PTPase can
have a negative impact on cellular insulin signal-
ing, although its exact physiological role has not
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FIGURE 23 A. Relation of gastrocnemius muscle triglyc-
eride and DAG contents in rats fed fat-rich and starch diets.
B. Total PKCe expression was not increased but the
PKCe membranal/cytosolic ratio to DAG content was pro-
nouncedly elevated. Adapted from Schmitz-Pfeiffer et al.,
Ref. [79].
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FIGURE 24 Tissue triglyceride content in Psammomys. Liver
and muscle triglyceride levels in Psammomys in stages A-C.
Values are mean*SE for groups of 10-14 animals at each
stage differences significant at P <0.05 at least. Adapted from
Ref. [14].

been established. On the other hand, SHP-2 posi-
tively influences receptor signaling on mitogenic
pathways in cellular studies. The reduction of
tyrosine phosphorylation effected by TK activity
could be caused by enhanced dephosphorylation
of the receptor B-subunit and IRS-1, carried out
by the action of the tandem domain transmem-
brane LAR PTPase. Abundance of LAR-PTPase
was observed in skeletal muscle and liver of ro-
dents with genetically determined insulin resist-
ance rats and in human obese patients.[38]

The activity and expression of LAR PTPase was
investigated in Psammomys.* In stage A, a low
PTPase activity in liver and muscle was found, in
parallel with the low density of insulin receptors.
Fasting caused a decrease rather than increase
in LAR-PTPase in stage A Psammomys (Fig. 25).
However, Psammomys tissues in stage C did not
show an increase in cytosolic or membranal LAR
PTPase activity, compared with stage A, suggest-
ing that LAR-PTPase is unlikely to be responsible
for IR dephosphorylation in insulin resistant
Psammomys. This observation parallels the find-
ings in human nutritionally induced diabetes.
Molecular and linkage analysis of type 1 PTPase
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FIGURE 25 LAR PTPase activity in Psammomys muscle. Cy-
tosolic LAR PTPase activity on HE diet (stage C) showing a
tendency to increase after overnight fasting but a decrease in
the fed state. Basal activity in the fed and fasted state is not
significantly different.

on the B-subunit gene was not consistent with a
role in insulin resistance in Pima Indians.!]

To examine whether PTP 1B is involved in the
susceptibility to insulin resistance or diabetes
in Psammomys, Tkeda et al.’2! have measured its
expression and activity towards the isolated IR of
skeletal muscle of diabetic animals from DP line
and contro]l animals from the DR line. The ex-
pression level of PTP 1B in the skeletal muscle
was increased by 83% in the diabetic animals
compared with the control animals. However,
when the activity of PTP 1B was determined
there was a surprising 60% decrease in its activ-
ity in stage C Psammomys. This was seen in the
total homogenate and especially in the particu-
late fraction when compared with the control DR
animals or with the prediabetic animals (Fig. 26).
In addition, PTP 1B activity was inversely corre-
lated to serum glucose concentrations and in-
sulin levels. The decrease in activity was assumed
to be due to qualitative change in the PTP 1B
molecule, probably secondary to the effect of
some factor(s) in the diabetic milieu. These
findings suggest that PTP 1B is not involved
in the development of insulin resistance in
Psammomys. The overexpression of PTP 1B in
skeletal muscle does not appear to be genetically
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FIGURE 26 PTP1B expression (left side) and activity (right
side) in Psammomys muscle. The expression of PTP1B was in-
creased in stages A and C on HE diet compared to DR Psam-
momys set to 100. However, the activity of the enzyme
measured by dephosphorylation of isolated IR decreased in
stage C probably as a result of enzyme impairment in the di-
abetic milieu. Mean*SE of 10 samples P<0.005 vs. DR.
From lkeda et al., Ref. [92].

determined but may represent a compensatory
mechanism against such impairment of the en-
zyme. Thus, the likely conclusion emerges that
there is no evidence for negative regulatory in-
fluence of PTPases in the nutritionally induced
diabetes of Psammomys. Support for this con-
tention comes from the findings of Worm et al.l*]
that the skeletal muscle PTPase in insulin re-
sistant Zucker fa/fa rats was found to be down-
regulated. The decrease in its activity could be
prevented by normalizing glucose and insulin
levels by treatment with metformin.

Conclusions and Overview

Psammomys is a model of human nutritionally
induced diabetes which reaches now epidemic
proportions in certain populations. The underly-
ing cause is increased food availability and con-
sumption following a welcome improvement in
lifestyle. However, the latent propensity to dia-
betes among these populations is related to their
inborn metabolic capacity which is probably not
adjustable to the dietary surplus. This may re-
sult in insulin resistance, diabesity and strain on
compensatory insulin secretion with ultimate
loss of B-cell function. Some authors refer to
such socioeconomic perspective as leading to
nutritional genocide of global proportions. The
above described elements of insulin resistance
in Psammomys represent the antecedents of the
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development of worldwide diabetes epidemic in
human populations emerging from food scarcity
to food abundance.

Insulin resistance and B-cell dysfunction are
considered two interrelated factors in the patho-
genesis of IGT and type 2 diabetes. Although a
debate is still continuing on the primacy of
each abnormality, the evidence from Psammomys
studies clearly demonstrates that insulin resist-
ance with hyperinsulinemia precede the g-cell
lesion. B-cell dysfunction occurs only on HE
diet, there is no B-cell lesion in animals consum-
ing their native salt bush or laboratory LE diets.
The onset of insulin resistance and hyperinsu-
linemia in Psammomys precede any appreciable
weight gain, precluding any contribution of obe-
sity to IGT. On the contrary, if hyperinsulinemia
with B-cells oversecrete long enough the expan-
sion of adipose tissue may occur and secondar-
ily lead to overweight. A return to normalcy is
possible even after a period on HE diet, either
by a short term fasting, or by restricting the di-
etary intake. It is most probable that similar trig-
gering of IGT and diabetes applies to the affected
human populations.

The aberrant activity of PKC isoenzymes, es-
pecially of PKCg, is the potential causative mech-
anism in the generation of insulin resistance by
phosphorylation of serine/threonine residues on
IR and proteins of the signaling pathway. This
may lead to TK, PI3K and PKB attenuation with
negative feedback as well as to IR degradation.
Thus, the compensatory hyperinsulinemia pre-
cludes the adequate function of insulin signaling.

One of the primary outcomes of the overex-
pression of PKC isoenzymes may include PKCp,
involved in the initiation of vascular complica-
tions of diabetes in insulin independent tissues
as retina and kidneys.*%! The common aspect
of this overexpression with Psammomys and fat-
fed rats is tissue accumulation of DAG. DAG is
directly related to tissue TG content and this may
be an especially important inducer of insulin re-
sistance in nonadipose tissues. Insulin resistance
and its corollaries may then result from en-
hanced muscle lipid deposition, not necessarily
from hyperlipidemia. The initial fat deposition
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may be also promoted by hyperinsulinemia with
hyperglycemia and the following diabesity.

The preventive attempts should be therefore
directed to avoiding muscle TG deposition, pro-
motion of DAG breakdown by use of modalities
activating DAG kinase, which converts DAG
into phosphatidic acid. Other possibility to
counteract the insulin resistance is specific inhi-
bition of PKC isoenzymes dependent on DAG.
Among those is H7 — a piperazine derivative,
polymyxin B, bisindoxylmaleimide and stau-
rosporine which are inhibitory to PKC isoen-
zymes in vitro.’®! Herbimycin was also shown to
have PKC inhibitory properties.’”! Inhibition of
PKCB with high degree of specificity has been
achieved by LY 33353%! and tried successfully in
vascular tissues, mainly ocular and renal, which
are predisposed to complications in hyperinsu-
linemic-hyperglycemic conditions. It is also re-
markable that the recently reported PKC6
knockout in mice improved insulin action and
signaling defects induced by lipid infusion.®!

Potentiating insulin sensitivity at its prevalent
concentrations would also lead to lowering of
insulin resistance as shown by the application of
IR activators.'®! Increased insulin sensitivity
was also achieved by treatment with vanadyl
sulfate and other vanadium compounds!!%1-104
including Psammomys maintained on HE diet
(Fig. 27). Vanadyl sulfate restoration of normo-
glycemia and normoinsulinemia and increase in
muscle metabolic activity appears to be distal to
IR/TK signaling.['}

The overexpression of PKC isoenzymes may
be the result of genetic susceptibility exemplified
by Psammomys or by “thrifty gene” character-
istics of desert animals or individuals in the
affected populations, activated by the changing
environmental influences. This course of events
is illustrated by Figure 28. The inherent muscle
insulin resistance aimed to spare the scarce
glucose for obligatory tissues (such as the brain)
fails when confronted with excess of nutrients.
It turns the insulin resistance to effect a misuse of
the surplus energy by creating diabesity, hyper-
lipidemia and elicit other complications. Such
situation is most probably an integral component
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FIGURE 27 Vanadyl potentiation of insulin action. Psam-
momys on HE diet was treated im. with vanadyl sulfate
(5mg/kg for 5 days), after maximal glucose and insulin lev-
els in plasma were reached (stage C). Vanadyl I: complete
recovery to control glucose and insulin levels in 10 of 17
animals. Vanadyl II: Marked but incomplete recovery in 7 of
17 animals. The low levels of glucose and insulin persisted
for at least 15 days after vanadyl administration. Repro-
duced from Ref. [100] with permission.

of the insulin resistance syndrome in animals
and humans alike and may be therefore consid-
ered as “PKC overexpression syndrome”.

Since the times of ancient discoveries of the
causes of diabetes, emphasis was always placed
on sweetness of urine, blood and other body
fluids, leading to the addition of the adjective
“mellitus” to diabetes. We should reconsider if
this adjective is fully justified. The traditional
concepts related to “sweetness” and emphasis on
glucose-insulin axis do not explain the basic
pathophysiological mechanisms leading to severe
complications and mortality both in type 1 and
type 2 diabetes as well as the reasons for the de-
velopment of insulin resistance. The major causes
of IGT and diabetes morbidity are strongly re-
lated to aberrant fat rather than carbohydrate
metabolism. These include lack of restraint of the
mobilization of FFA from adipose tissue leading
to lipolysis and subsequent excessive fatty acid
oxidation, acidosis and ketosis causing defect in
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FIGURE 28 Schematic presentation of the development of
nutritional diabetes in Psammonys obesus and subjects with a
thrifty gene background consuming an abundant ad libitum
diet. Insulin resistance and PKCe overexpression develop. Ini-
tially marginal hyperglycemia promotes B-cell insulin secre-
tion resulting in hyperinsulinemia, which in time becomes
insufficient to compensate for the rising glucose level. The hy-
perinsulinemia and PKC overexpression attenuate the func-
tion of insulin receptor and its substrate as well as the glucose
transport and PKB activity. Tissue triglyceride deposition en-
sues with raised levels of DAG which in turn exacerbate the
PKCe expression. The permanent secretion pressure on S-cells
causes apoptosis and necrosis requiring support with external
insulin for survival.

glucose uptake by peripheral tissues as well as
enhanced hepatic gluconeogenesis and delivery
of fat to muscle. It may be remarked that the re-
straint of lipolysis in adipose tissue is the most
sensitive action of insulin which becomes com-
promised by hyperinsulinemia. In blood vessels
the oxidative trend prevailing in diabetes directs
the cholesterol esterified with unsaturated fatty
acids to surrogate receptors due to nonrecogni-
tion of the oxidized molecules, which facilitates
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foam cell and smooth muscle proliferation, arteri-
al coronary cholesterol plaques, atherosclerosis
and thrombosis. In the pancreas the excess of
lipids taken up or synthesized in B-cells leads
to B-cell malfunction due to lipotoxicity with
apoptosis and necrosis. As indicated here and
elsewhere the accumulation of muscle TG and the
consequent rise in the content of the triglyceride
intermediate DAG is instrumental in overex-
pression of PKCe and other PKC isoenzymes. In
addition to the derangement in fat metabolism
discussed in detail by McGarry!'®! the newly dis-
covered detrimental role of DAG accumulation
may have uncovered a new culprit implicating fat
metabolism as a causative metabolic deviation in
diabetes. Perhaps this is the time to start using the
term “diabetes lipidicus” rather than “mellitus”
in order to appropriately define the diabetes
pathophysiology.
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